Selasa, Februari 08, 2022

Proof of the Derivative of Exponential Functions using Logarithmic Differentiation

———

Oleh hh (Selasa, Februari 08, 2022)


Here is some working proof of deriving the exponential functions that I calculate. I know there's a lot on the internet and there is some other way to prove it. Tbh, I didn't really know how the formula is derived as in the figure above. It's like, how did this happen? Maybe I was too unknowledgeable to figure it out or lack of mathematical (but I just did after a few strive). So here is some working proof, if you guys struggling to figure it out. Sometimes, I review my own entries if I start to forget, lol.

#1 Proof for the derivative of \(\displaystyle\frac{d}{dx}e^x=e^x\),
Let, \(\displaystyle y=e^x\)
\(\displaystyle \ln{y}=\ln{e^x}\)
\(\displaystyle \ln{y}=x\ln{e}\,\,\Rightarrow\,\,\ln{e}=1\)
\(\displaystyle \ln{y}=x\cdot 1\)
\(\displaystyle\frac{d}{dx}[\ln{y}]=\frac{d}{dx}[x]\)
\(\displaystyle\frac{1}{y}y'=1\)
\(\displaystyle y'=y\)
Substitute \(\displaystyle y=e^x\),
\(\displaystyle y'=e^x\)
\(\displaystyle \frac{d}{dx}[e^x]=e^x\)                                \(\square\)

#2 Proof for the derivative of \(\displaystyle\frac{d}{dx}a^x=a^x\ln{a}\),
Let, \(\displaystyle y=a^x\)
\(\displaystyle \ln{y}=\ln{a^x}\)
\(\displaystyle \ln{y}=x\ln{a}\,\,\Rightarrow\,\,\ln{e}=1\)
\(\displaystyle \ln{y}=\ln{a}\cdot \frac{d}{dx}[x]\)
\(\displaystyle\frac{1}{y}y'=\ln{a}\cdot 1\)
\(\displaystyle\frac{1}{y}y'=\ln{a}\)
\(\displaystyle y'=y\cdot\ln{a}\)
Substitute \(\displaystyle y=a^x\),
\(\displaystyle y'=a^x\)
\(\displaystyle \frac{d}{dx}[a^x]=a^x\cdot\ln{a}\)                                \(\square\)

#3 Proof for the derivative of \(\displaystyle\frac{d}{dx}e^u=e^u\cdot \frac{d}{dx}[e^u]\),
Let, \(\displaystyle y=e^u\)
\(\displaystyle \ln{y}=\ln{e^u}\)
\(\displaystyle \ln{y}=u\ln{e}\,\,\Rightarrow\,\,\ln{e}=1\)
\(\displaystyle \ln{y}=u\cdot 1\)
\(\displaystyle\frac{d}{dx}[\ln{y}]=\frac{d}{dx}[u]\)
\(\displaystyle\frac{1}{y}y'=\frac{d}{dx}[u]\)
\(\displaystyle y'=y\cdot \frac{d}{dx}[u]\)
Substitute \(\displaystyle y=e^u\),
\(\displaystyle y'=e^u\cdot \frac{d}{dx}[u]\)
\(\displaystyle \frac{d}{dx}[e^u]=e^u\cdot \frac{d}{dx}[u]\)                                \(\square\)

#4 Proof for the derivative of \(\displaystyle\frac{d}{dx}a^u=a^u\ln{a}\frac{d}{dx}[u]\),
(Keeping in mind the Chain Rule and any variable restrictions).
Let, \(\displaystyle y=a^u\)
\(\displaystyle \ln{y}=\ln{a^u}\)
\(\displaystyle \ln{y}=u\ln{a}\)
\(\displaystyle\frac{d}{dx}[\ln{y}]=\frac{d}{dx}[u\ln{a}]\)
\(\displaystyle\frac{1}{y}y'=\ln{a}\cdot\frac{d}{dx}[u]\)
\(\displaystyle y'=\ln{a}\cdot\frac{d}{dx}[u]\)
\(\displaystyle y'=y\ln{a}\cdot\frac{d}{dx}[u]\)
Substitute \(\displaystyle y=a^u\),
\(\displaystyle y'=a^u\cdot\ln{a}\cdot\frac{d}{dx}[u]\)
\(\displaystyle \frac{d}{dx}[a^u]=a^u\cdot\ln{a}\cdot\frac{d}{dx}[u]\)                                \(\square\)

E.g. (For example proof #4).
\(\displaystyle \tan{e^{(y-x)}}\)
Let, \(\displaystyle y=\tan{e^{(y-x)}}\)
\(\displaystyle \ln{y}= \ln{(\tan{e^{(y-x)}})}\)
\(\displaystyle\frac{d}{dx}[\ln{y}]=\frac{d}{dx}\bigg[\ln{(\tan{e^{(y-x)}})}\bigg]\)
\(\displaystyle\frac{1}{y}y'=\ln{(\tan{e})}\frac{d}{dx}\bigg[(y-x)\bigg]\)
\(\displaystyle\frac{1}{y}y'=\ln{(\tan{e})}\cdot\bigg[\frac{d}{dx}(y)-\frac{d}{dx}(x)\bigg]\)
\(\displaystyle y'=y\ln{(\tan{e})}\cdot\bigg[\frac{d}{dx}(y)-1\bigg]\)
Substitute \(\displaystyle y=\tan{e^{(y-x)}}\),
\(\displaystyle y'=\tan{e^{(y-x)}}\cdot\ln{(\tan{e})}\cdot\bigg[\frac{d}{dx}(y)-1\bigg]\)

Tiada ulasan:

Catat Ulasan

Pengikut langganan