Isnin, Mei 29, 2023

Suka atau rela?


Pelaburan yang paling berbaloi bagi diri kita adalah ketika kita melakukan sesuatu tanpa mengharapkan apa-apa balasan. Mungkin kita sudah pernah mendengar istilah sukarelawan. Mereka ialah orang yang dengan rela hati, ikhlas, tanpa paksaan daripada mana-mana pihak dalam melakukan apa-apa tugas/aktiviti. Kalau kau tak rela, kau akan dipanggil sukawan. Tetapi jarang sekali ada orang yang benar-benar melakukan suatu perkara itu dengan percuma hakikatnya. Masa dan tenaga yang digunakan juga merupakan bayaran yang sangat berharga, meskipun sering kali kita tidak sedar akan perkara ini. Namun, aku tidak ingin membahas dalam konteks tersebut. Yang ingin aku suluhkan adalah peranan sukarelawan dalam pelaburan diri.

Pernahkah terlintas dalam fikiran kita mengapa sebahagian orang menyukai kerja sukarelawan? Ada banyak hal lain yang mampu mereka laburkan dalam kehidupan mereka, tetapi mengapa mereka memilih untuk bekerja tanpa sebarang balasan? Apa signifikansi sukarelawan dalam kehidupan kita?

Persoalan ini pernah dibangkitkan kepada aku semasa aku terlibat dengan kerja sukarelawan. Melalui pengamatan aku sendiri, kerja sukarelawan ini memberikan peluang kepada kita untuk mengembangkan pelbagai kemahiran dan memperoleh pengalaman baru. Sebagai contoh, sukarelawan dalam organisasi kesihatan boleh memperoleh pengetahuan perubatan dan kemahiran penjagaan yang berguna untuk kerjaya masa depan (jika kau nak jadi ahli farmasi). Namun sukarelawan juga dapat meningkatkan kemahiran kepimpinan, komunikasi, dan kerjasama dalam pasukan. Ini adalah perkara yang umum bila melakukan kesukarelawan, sebab kau perlu bersosial dengan orang lain.

Di sini kau perlu pertimbangkan bagaimana hendak melaburkan masa dan tenaga kau dalam sukarelawan agar semua itu menguntungkan masa depan kau juga. Sukarelawan tidak semestinya membantu masyarakat yang dalam kesusahan. Merujuk kepada definisi asal sahaja, itulah kita panggil sebagai sukarelawan. Ramai diantara kita sebenarnya tidak begitu nampak apa keperluannya kerja sukarelawan ini. Sekadar suka-suka sahajakah? Kalau sekadar suka-suka sahaja, pergilah cari hiburan. Namun dalam satu aspeknya adalah menghargai kerja sukarelawan itu sendiri.

Kita perlu pertimbangkan juga bagaimana sukarelawan ini dapat mengisi lohong kekurangan yang sepatutnya boleh kita isi dalam diri kita. Ada masa, kemahiran dan pengalaman yang kita peroleh dalam menjalankan aktiviti sukarelawan akan dapat membantu kita dalam menjalani hidup yang lebih berkesan. Misalnya, andai kita menyertai aktiviti sukarelawan banjir kita tahu apa yang perlu kita lakukan. Tidak hanya semasa, namun sebelum dan selepas. Perkara-perkara inilah yang memberi manfaat besar terhadap diri kita.

Bahkan anda boleh nampak perbezaannya mereka yang sudah banyak kerja sukarelawan dengan mereka yang hidup di atas kepentingan sesuatu. Mereka yang melapangkan akan lebih dipermudahkan satu masa nanti. Inilah aku kira perlaburan yang penting kita jana dalam kehidupan kita. Orang tidak perlu tahu siapa diri kita, apa kita buat. Hanya dengan memberi bantuan, kepada Allah sahajalah kita berharap balasan ke atas apa yang telah kita lakukan.

- hh
Share:

Ahad, Mei 21, 2023

Quantum Mechanics: Non-Zero Probability in Classically Forbidden Regions

In quantum mechanics, the wave function, denoted as Ψ (psi), can have non-zero values in what is called the "classically forbidden region." This region refers to areas where the particle's energy is lower than the potential energy. \(E<V(x)\)

In classical physics, particles are expected to behave according to classical laws and have definite positions and energies. However, in quantum mechanics, particles can exhibit wave-like behavior and have non-zero wave functions even in regions where their energy would be insufficient to reach classically.

The wave function Ψ represents the probability amplitude of finding the particle in different positions. When the wave function is non-zero in the classically forbidden region, it means that there is a non-zero probability of finding the particle in that region, despite classical expectations.

In simpler terms, the particle can exist in regions where, according to classical physics, it should not be able to exist. The non-zero values of the wave function in these classically forbidden regions indicate that there is a non-zero probability of finding the particle there.

This concept challenges our classical intuitions because it suggests that particles can exhibit wave-like behavior and have a finite probability of "tunneling" through potential energy barriers. Even though the particle's energy may not be sufficient to overcome the potential energy barrier classically, there is still a chance, albeit small, that it can be found in the forbidden region according to the quantum laws.

In summary, the wave function can have non-zero values in regions where, classically, the particle would not be expected to exist. This indicates that there is a non-zero probability of finding the particle in these classically forbidden regions.
Share:

Bound and Unbound Particles: Understanding Energy and Potential dalam FQ

To understand this, let's consider an example. Imagine a particle moving along the x-axis, and there is a potential energy function, \(V(x)\), that varies with position. If the particle's energy, E, is lower than the potential energy at any given position outside of a finite region (meaning \(E < V(x)\) for those positions), then the particle is not able to overcome the potential energy barrier and is trapped within the potential well.


On the flip side, if the energy of the particle, \(E\), is greater than the potential energy, \(V(x)\), at any position, it means that the particle has enough energy to overcome the potential energy barrier. In this case, the particle is not bound to the potential well and can move freely in that region.

In summary, if the energy of a particle is lower than the potential energy outside of a finite region, the particle is bound within that potential. It cannot escape and is confined to that particular area. Conversely, if the energy of the particle is higher than the potential energy, the particle is not bound and can move freely in that region.

Glosari:
"bound" refers to the particle being confined or trapped within a certain region of space due to the potential energy. On the other hand, "unbound" means the particle is not confined and can move freely.

If the energy of the particle, \(E\), is less than the potential energy, \(V(x)\), \(E<V(x)\) outside of a finite region of space, then the particle is bound within that potential.
Share:

Falsafah disebalik filem KIL

Cuba kau fikir sejenak, fikirkan akan ketiadaan, kekosongan. Seperti bayi yang baru lahir. Di mana kau hanya hidup ke atas naluri untuk kelangsungan hidup. Maksud aku, makan, minum, dan tempat tinggal yang kita gelar "Home". Buat kau rasa selamat dari sebarang bahaya. Tiada emosi mahupun perasaan. Tetapi bukan mati, cuma tiada. Macam bayi? Menangis, namun hanya ke atas naluri. (Aku beri 1 minit untuk kau fikirkan).

Kini kau fikirkan keadaan kau sekarang. Fikiran bercelaru, emosi yang tidak tentu arah. Perasaan yang kau sendiri tidak pasti. Berbolak balik macam tayar yang dilepaskan dari tempat yang curam. Kau juga tidak suka keadaan kau sekarang. Menyalahkan diri sendiri.

Tapi kau sedar tidak sedar, bahawa hakikatnya ini semua mainan fikiran dan emosi kau sendiri? Kau boleh tekan butang "reset" dalam fikiran kau untuk jadi bayi baru lahir, tiada masalah. Kau boleh tinggalkan semua emosi dan perasaan kau kat belakang. Dalam kekosongan ini, minda kau mungkin ada yang membantah dengan masalah-masalah. Di sini kognitif bermula, apa masalah paling teruk kau boleh dapat. Dan apa masalah tu nak buat dengan hidup kau pada masa hadapan? Tak berguna? Buang.

Jika kau rasa fikiran kau tiada butang "reset", berdoalah agar kau kehilangan ingatan. Pada waktu itu, kau sedar (jika kau mula ingat akan waktu lalu) bahawa segala masalah-masalah, perasaan, emosi yang kau hadapi langsung tidak berguna. Sebab kau dah lost it all. Lepas kau hilang ingatan, kau jadi manusia. Possibly paling teruk condition macam bayi.

Dalam kesucian pemikiran kau itu, kau boleh pilih untuk hidup. Kau boleh pilih untuk senyum. Kau boleh pilih untuk bergembira.

Cuma, kau tidak perlu untuk hilang ingatan. Kau hanya perlu KIL the emotional and the negative cognitive thought. How? Read first paragraph.

Inilah idea apa yang diselitkan dalam filem KIL. Kau boleh renyukkan pemikiran serta emosi kau yang rosak, dengan ketiadaan. Namun tidak selamanya tiada, kau perlu isi dengan kebahagiaan.

Kita mengawal emosi kita, bukan emosi yang mengawal kita kerana pemikiran adalah kuasa yang ada pada semua orang.


- hh

Share:

Understanding the Schrödinger Equation: Linearity and Solutions in Quantum Mechanics

In quantum mechanics, the Schrödinger equation has solutions called wave functions (often denoted as Ψ or psi). These wave functions describe the possible states of a quantum system, such as the position or energy of a particle.

If we have a wave function Ψ that satisfies the Schrödinger equation (meaning it is a valid solution), we can multiply that wave function by any complex number, let's call it A. The result, AΨ, will also be a valid solution to the Schrödinger equation.

In other words, if we have a valid solution Ψ, multiplying it by any complex number A gives us another valid solution AΨ.

This property arises because the Schrödinger equation is linear. Linearity means that if Ψ is a solution, then any constant multiple of Ψ (such as AΨ) is also a solution.

However, the value of A, the complex number we multiplied by the wave function, cannot be determined from the Schrödinger equation alone. The equation itself does not provide any information about the specific value of A.

To summarize, the statement is saying that if we have a valid solution to the Schrödinger equation, we can multiply it by any complex number and still have a valid solution. The Schrödinger equation alone does not give us information about the specific value of that complex number.
Share:

Quantum Mechanics: The Wave Function and Probability in High

In classical physics, we are used to thinking of particles as having a definite position in space at any given time. However, in quantum mechanics, things work a bit differently.

According to quantum mechanics, the behavior of particles, such as electrons, is described by a mathematical function called the wave function, usually denoted by the Greek letter Ψ (psi). The wave function is used to calculate the probability of finding the particle in different regions of space.

So, instead of thinking about particles having a specific position at all times, we use the wave function to determine the likelihood of finding the particle in different places. The wave function provides us with information about the chances of finding the particle in different locations when we make a measurement or observation.

In other words, the wave function gives us a probability distribution. It tells us where the particle is more likely to be found and where it is less likely to be found. The wave function can be used to calculate the probability of finding the particle in a specific region of space, like a small box or an area of interest.

To summarize, in quantum mechanics, we can't pinpoint the exact position of a particle at any given time like we can in classical physics. Instead, we use the wave function, a mathematical function, to calculate the probability of finding the particle in different regions of space. The wave function gives us information about the likelihood of finding the particle in specific places when we make a measurement or observation.


https://demonstrations.wolfram.com/PlotsOfQuantumProbabilityDensityFunctionsInTheHydrogenAtom/
Share:

The concept of separation of variables in QM

The concept of separation of variables is a powerful technique used in solving certain types of mathematical equations, particularly partial differential equations (PDEs). It allows us to simplify the process of solving complex equations by breaking them down into simpler equations that can be solved individually.

The idea behind the separation of variables is based on the assumption that a solution to a multi-variable equation can be expressed as a product of functions, each depending on only one variable. By making this assumption and substituting this product form into the original equation, we can often transform a complicated equation into a set of simpler ordinary differential equations (ODEs) or algebraic equations.

The process of separation of variables typically involves the following steps:

1. Assume a separable solution:
Assume that the solution to the equation can be expressed as a product of functions, each depending on a different variable. For example, if we have a function f(x, y), we assume that it can be written as f(x, y) = X(x)Y(y).

2. Substitute the assumed solution:
Substitute the assumed separable solution into the original equation.

3. Separate the variables:
Collect terms that depend on different variables on opposite sides of the equation. This typically involves grouping terms with the same variable together.

4. Equate each side to a constant:
Since the separated terms depend on different variables, they must be equal to a constant (known as a separation constant). This step effectively converts the original PDE into a set of ODEs or algebraic equations.

5. Solve the resulting equations:
Solve the simplified equations obtained in the previous step, which are typically ordinary differential equations or algebraic equations.

6. Combine the solutions:
Once the separate solutions for each variable are obtained, combine them using the assumed separable form to obtain the general solution to the original equation.

The key benefit of the separation of variables is that it simplifies the process of solving complex equations by breaking them down into simpler equations that can be solved individually. It allows us to solve problems that would be otherwise difficult or impossible to solve directly.

This technique is widely used in various fields, including physics (such as in solving the wave equation, heat equation, and Schrödinger equation), engineering, and applied mathematics, where equations with separable variables arise frequently.
Share:

The infinite potential barriers force to be zero outside of the potential well

In this context, the infinite potential barriers refer to the "walls" of the square well. These barriers are very high, meaning that the particle (described by the wave function) cannot exist outside the boundaries of the well.

Because of these infinite potential barriers, the wave function, Ψ, is forced to be zero (meaning no probability of finding the particle) outside of the potential well. In other words, the particle cannot exist beyond the walls of the well.

The statement also provides two boundary conditions for the wave function within the well. It states that Ψ(0,t) = 0 and Ψ(a,t) = 0. These conditions mean that the wave function is zero at both ends of the well, where 0 represents the leftmost boundary and a represents the rightmost boundary of the well.

These boundary conditions ensure that the wave function satisfies the properties of the infinite square well. It helps determine the allowed energy states and the corresponding wave functions within the well.

In summary, the infinite potential barriers confine the particle within the square well, forcing the wave function to be zero outside of the well. The boundary conditions Ψ(0,t) = 0 and Ψ(a,t) = 0 specify that the wave function is zero at both ends of the well. These conditions are necessary to describe the behavior of the particle in the system accurately.
Share:

No physical potential can be truly infinite

The statement says that no physical potential (a measure of energy) can be truly infinite. In simpler terms, it means that there is a limit to how much energy something can have. However, in certain situations, we can use the idea of infinite potential as a good approximation or a useful tool for understanding certain systems.

Now, let's talk about the one-dimensional infinite square-well potential. Imagine a particle, like an electron, confined within a region that acts like a box. This box has endless potential energy at its boundaries, which means the particle cannot escape from it.

The statement suggests that when the potential barriers of the box are much higher than the particle's energy, denoted as V>>E, we can treat the potential as infinite for practical purposes. This means that the particle experiences a very sharp and high potential barrier that is difficult to cross.

In this situation, the behavior of the particle can be approximated by assuming an infinite potential. It simplifies the calculations and allows us to understand the properties of the system more efficiently. However, it's important to remember that in reality, no potential can truly be infinite, and this is just a useful approximation in certain scenarios.

Although infinite potential doesn't exist in the physical world, we can still use it as an approximation to understand systems with very high potential barriers compared to the energy of the particles involved, like the one-dimensional infinite square-well potential.




Share:

Rabu, Mei 17, 2023

1st Uncertainty Principle (Prinsip Ketidakpastian Pertama)

Kita tidak dapat mengetahui masa depan kerana kita tidak mengetahui masa sekarang.

Untuk menganggap zarah bergerak sebagai kumpulan gelombang (wave group), kita perlu membayangkan bahawa terdapat had asas terhadap ketepatan dalam mengukur sifat "zarah" seperti kedudukan (position) dan momentum.

Bagi menjelaskan apa yang terlibat, mari kita lihat pada kumpulan gelombang.

Semakin sempit kumpulan gelombangnya, semakin tepat kedudukan suatu zarah yang boleh ditentukan. Namun, panjang gelombang dalam gelombang paket yang sempit tidak dapat dijelaskan dengan baik; tidak cukup gelombang untuk mengukur panjang gelombang dengan tepat. Ini bermaksud disebabkan

$$\lambda=\frac{h}{\gamma mv}$$

momentum zarah \(\gamma mv\) tidak mempunyai kuantiti tepat. Jika kita membuat satu siri pengukuran momentum, kita akan mendapati pelbagai nilai.

Sebaliknya pula, kalau kita ada kumpulan gelombang yang luas, yang mana panjang gelombang adalah lebih jelas. Momentum yang sepadan dengan panjang gelombang ini mempunyai kuantiti tepat dan siri pengukuran yang memberikan julat nilai yang lebih dekat.

Namun, di mana zarah tersebut berada?

Keluasan kumpulan gelombang sekarang terlalu besar untuk kita mengukur secara tepat di mana zarah berada pada satu masa.

Oleh itu, kita mempunyai prinsip ketidakpastian yang menyatakan,

"Adalah mustahil untuk mengetahui kedudukan dan momentum dengan tepat bagi suatu objek pada satu masa".

Prinsip ini ditemui oleh Werner Heisenberg pada tahun 1927 yang merupakan salah satu daripada hukum fizik yang paling ketara digunakan.

Sebuah kumpulan gelombang yang terpencil (isolated wave group) adalah hasil superposisi gelombang yang tidak terhingga dengan panjang gelombang berbeza. Semakin sempit kumpulan gelombang, semakin besar julat panjang gelombang yang terlibat. Sebuah kumpulan gelombang de Broglie yang sempit bermakna ia mempunyai kedudukan zarah yang jelas (\(\Delta x kecil\)) namun mempunyai panjang gelombang yang kurang jelas dan mempunyai ketidakpastian \Delta p dalam momentum zarah yang diwakili kumpulan itu. Sebuah kumpulan gelombang yang luas bermakna mempunyai momentum yang lebih tepat namun kedudukan yang kurang tepat.


Share:

Selasa, Mei 16, 2023

Scientific theories are not typically proven, but rather supported by evidence.

In science, theories are not typically "proven" in the absolute sense, as they might be in mathematics. Instead, theories are developed to explain observations and predict future results. They are then tested by gathering empirical evidence.

If the evidence aligns with the predictions of the theory, this supports the theory and increases our confidence in it. However, it does not "prove" the theory in an absolute sense. This is because it's always possible that future evidence could contradict the theory, or that a new theory could be developed that explains the same evidence in a more accurate, consistent, or efficient way.

For example, Newton's laws of motion were long considered to be "proven" based on the available evidence. However, when observations were made at very high speeds (close to the speed of light) or very small scales (on the order of atoms and subatomic particles), Newton's laws were found to be inadequate. This led to the development of relativity and quantum mechanics, which better explained these observations.

This iterative process of developing theories, testing them with evidence, and refining or replacing them based on the results is the fundamental method of science. It's how science advances and our understanding of the universe becomes more accurate and complete. So, while we don't typically talk about scientific theories being "proven," we do talk about them being supported by evidence and is more or less accurate or complete based on the available evidence.

- hh
Share:

48 Hukum untuk berkuasa

The 48 Laws of Power is a book by Robert Greene published in 1998. It explores the principles and strategies for gaining and maintaining power in various aspects of life, including politics, business, and personal relationships. The book draws from historical examples and anecdotes to illustrate each law and provides insights into power dynamics and human behavior. The laws are intended to serve as a guide for individuals seeking to navigate power dynamics effectively. However, it is important to approach these principles with critical thinking and ethical considerations, as the book has been both praised for its insights and criticized for its Machiavellian perspective. Here are the 48 laws,
  1. Never Outshine the Master.
  2. Never Put too Much Trust in Friends; Learn How to Use Enemies.
  3. Conceal Your Intentions.
  4. Always Say Less Than Necessary.
  5. So Much Depends on Reputation; Guard it with Your Life.
  6. Court Attention at all Cost.
  7. Get Others to Do the Work for You, but Always Take the Credit.
  8. Make Other People Come to You; Use Bait if Necessary.
  9. Win Through Your Actions, Not Through Argument.
  10. Avoid the Unhappy and Unlucky.
  11. Learn to Keep People Dependent on You.
  12. Use Selective Honesty and Generosity to Disarm Your Victim.
  13. When Asking for Help, Appeal to People's Self-Interest, Never to their Mercy or Gratitude.
  14. Pose as a Friend, Work as a Spy.
  15. Crush Your Enemy Totally.
  16. Use Absence to Increase Respect and Honor.
  17. Keep Others in Suspended Terror; Cultivate an Air of Unpredictability.
  18. Do Not Build Fortresses to Protect Yourself; Isolation is Dangerous.
  19. Know Who You're Dealing with; Do Not Offend the Wrong Person.
  20. Do Not Commit to Anyone.
  21. Play a Sucker to Catch a Sucker; Seem Dumber Than Your Mark.
  22. Use the Surrender Tactic; Transform Weakness into Power.
  23. Concentrate Your Forces.
  24. Play the Perfect Courtier.
  25. Recreate Yourself.
  26. Keep Your Hands Clean.
  27. Play on People's Need to Believe to Create a Cult-like Following.
  28. Enter Action with Boldness.
  29. Plan All the Way to the End.
  30. Make Your Accomplishments Seem Effortless.
  31. Control the Options; Get Others to Play with the Cards You Deal.
  32. Play to People's Fantasies.
  33. Discover Each Man's Thumbscrew.
  34. Be Royal in Your Own Fashion; Act Like a King to be Treated Like One.
  35. Master the Art of Timing.
  36. Disdain Things You Cannot Have; Ignoring Them is the Best Revenge.
  37. Create Compelling Spectacles.
  38. Think as You Like but Behave Like Others.
  39. Stir Up Waters to Catch Fish.
  40. Despise the Free Lunch.
  41. Avoid Stepping into a Great Man's Shoes.
  42. Strike the Shepherd and the Sheep will Scatter.
  43. Work on the Hearts and Minds of Others.
  44. Disarm and Infuriate with the Mirror Effect.
  45. Preach the Need for Change, but Never Reform too Much at Once.
  46. Never Appear too Perfect.
  47. Do Not Go Past the Mark You Aimed for; In Victory, Learn When to Stop.
  48. Assume Formlessness.
Share:

Vixra.org: Alternatif pemerkasaan Pelajar Sarjana Muda dalam Inkuiri Saintifik

Vixra.org ialah laman web yang menganjurkan kertas saintifik dan pracetak dalam pelbagai disiplin. Akronim "vixra" bermaksud "Arkib untuk Yang Luar Biasa," dan tapak web menggambarkan dirinya sebagai alternatif kepada penerbitan saintifik tradisional. Ia menyediakan platform untuk penyelidik berkongsi kerja mereka, walaupun ia tidak menjalani kajian semula setara (peer review) rasmi.

Vixra.org telah dicipta pada tahun 2009 oleh seorang ahli fizik bernama Philip Gibbs. Motivasi di sebalik penciptaannya adalah untuk menyediakan tempat kepada penyelidik berkongsi idea dan penemuan mereka secara bebas, tanpa memerlukan kelulusan daripada jurnal saintifik tradisional. Vixra.org bertujuan untuk menjadi platform terbuka dan boleh diakses untuk wacana saintifik, membolehkan penyelidik menerima maklum balas dan terlibat dalam perbincangan dengan rakan sebaya mereka.

Adalah penting untuk ambil perhatian bahawa Vixra.org beroperasi secara bebas daripada proses penerbitan saintifik yang mapan dan tidak mempunyai tahap kawalan kualiti dan penelitian yang sama seperti yang biasanya disediakan oleh jurnal kajian semula setara. Oleh itu, sementara tapak web menganjurkan pelbagai kertas saintifik, adalah dinasihatkan untuk mendekati kandungan dengan tahap berhati-hati dan penilaian kritikal. Namun, dapat saya fikirkan. Apakah signifikasinya Vixra.org terhadap pelajar sarjana muda?

Bagi saya sendiri, Vixra.org boleh berfungsi sebagai sumber yang berharga untuk pelajar sarjana yang memulakan perjalanan penyelidikan saintifik. Artikel ini bertujuan untuk menyerlahkan kepentingan Vixra.org dalam memperkasakan pelajar prasiswazah dan memupuk penglibatan mereka dalam inkuiri saintifik.

Vixra.org menawarkan pelajar prasiswazah peluang untuk mengembangkan ufuk penyelidikan mereka melangkaui jurnal akademik tradisional. Ia menyediakan akses kepada pelbagai jenis kertas saintifik dan pracetak, termasuk idea dan perspektif yang tidak konvensional. Pendedahan ini menggalakkan pelajar berfikir secara kreatif, meneroka sudut pandangan alternatif, dan membangunkan pemahaman yang lebih luas tentang bidang minat mereka.

Melibatkan diri dengan kandungan bahan di Vixra.org boleh mencetuskan rasa ingin tahu pelajar dan mengembangkan kemahiran berfikir kritis mereka. Demikian dapat mencabar mereka untuk menilai kebolehpercayaan, kesahan, dan metodologi kertas penyelidikan yang mereka terokai. Dengan menganalisis kekuatan dan kelemahan kandungan, pelajar sarjana boleh meningkatkan keupayaan mereka untuk menilai kesusasteraan saintifik dan membentuk pendapat yang bermaklumat.

Kalau dilihat sendiri, kebanyakkan kertas penyelidikan dan artikel yang dihoskan di Vixra.org cenderung untuk memberikan maklumat umum dan ringkasan pengetahuan semasa dalam bidang tertentu. Ciri ini menjadikan Vixra.org sebagai satu lubuk untuk pelajar sarjana muda yang ingin memahami konsep asas atau memperoleh pemahaman yang luas tentang sesuatu subjek. Sifat kandungan yang boleh diakses membolehkan pelajar mendalami pelbagai topik, memberikan mereka asas yang kukuh di mana mereka boleh membina pengetahuan mereka dan meneroka saluran penyelidikan selanjutnya. Vixra.org kadangkala menampilkan artikel lucu dan ringan. Makalah seperti ini selalunya bersifat satira atau tidak konvensional, memberikan perspektif yang unik dan menghiburkan tentang topik saintifik.

Vixra.org menyediakan peluang besar kepada pelajar sarjana muda untuk melibatkan diri dalam siasatan saintifik di luar sempadan jurnal akademik tradisional. Dengan meneroka platform, pelajar boleh meluaskan ufuk penyelidikan mereka, memupuk rasa ingin tahu dan kemahiran berfikir kritis mereka, dan mengambil bahagian secara aktif dalam dialog saintifik terbuka. Walau bagaimanapun, adalah penting bagi pelajar untuk menilai kandungan secara kritis serta mengakui batasan Vixra.org sebelum membuat kesimpulan atau menjadikan bahan kandungan Vixra.org dijadikan sumber rujukan.

Mungkin ini adalah pandangan yang tidak popular, namun sedikit keterbukaan terhadap perkara ini sebenarnya dapat membantu sebahagian besar perkembangan terhadap kajian kita, apatah lagi sebagai seseorang yang bergelar Pelajar Sarjana Muda.
Share:

Sabtu, Mei 13, 2023

Trinitite: The nuclear glass


On the dawn of Monday, July 16, 1945, at precisely 5:29:45 AM local time, humanity stepped into a new era, the Nuclear Age. This was demonstrated powerfully by the activation of a plutonium bomb, known as the 'Gadget,' a tangible manifestation of Einstein's renowned equation, \(E=mc^2\) or in its original form, \(m = L/V^2\), where L represents mass and V is the speed of light).

This explosive, with an energy yield equivalent to 21,000 tons of TNT (21 kilotons), was set off at the Alamogordo Bombing Range, situated 210 miles south of Los Alamos, New Mexico. It was a pivotal moment that forever changed our world as if releasing an omnipresent, unsettling genie from its bottle.

One intriguing outcome of this nuclear detonation was the creation of a unique, green glass-like substance. This was the result of the intense heat melting the surrounding desert sand. In homage to the codename 'Trinity,' which was selected by Robert Oppenheimer for this nuclear test.


Trinitite, named after the 'Trinity' nuclear test, is a mildly radioactive, green glassy substance formed when the extreme heat from the blast melted the arkosic sand at the site. It consists primarily of quartz, the only mineral from the original sand composition that survived the intense heat. However, trinitite is not uniform; it varies in color, composition, and properties, giving rise to different types.
  1. Green Trinitite: The most common type of trinitite is green in color. This is due to the presence of iron impurities within the glass. It forms the main body of the trinitite layer and can vary in shade from light to dark green.
  2. Black Trinitite: This variant contains remnants of the nuclear device used in the Trinity test. It is characterized by small metallic inclusions and is darker due to a higher concentration of radioactive materials such as plutonium and uranium.
  3. Red Trinitite: Red trinitite is a rare type, distinguished by its reddish hue. The red color is believed to result from the presence of copper in the wiring used in the 'Gadget,' the bomb that was detonated at the Trinity site.
  4. Clear Trinitite: This type is almost colorless and transparent, believed to be formed from pure quartz sand, devoid of impurities. It is less common than the green variant.
However, in the aftermath of the explosion, most of the trinitite was removed from the site, altering the landscape from its immediate post-blast state. Even after sixty-five years post-detonation, the trinitite glasses retain a slight level of radioactivity.

The radioactive nuclides present in the trinitite can be traced back to three distinct sources.

Firstly, remnants of plutonium and uranium from the original bomb are detectable.

Secondly, fission fragments that were produced during the nuclear fission process are present. Today, the only discernible fission fragments are Strontium-90 (Sr-90) and Cesium-137 (Cs-137).

Lastly, activation products were formed due to the interactions between the neutrons released during the explosion and various other nuclides. This complex mix of origins contributes to the enduring radioactivity of trinitite.

The extremely high temperatures and intense radiation produced by a nuclear explosion are required to create this unique glass-like substance. Given these conditions, it's not possible for trinitite to be produced naturally on Earth under normal circumstances. Hence, trinitite could be really rare to produce.

P/S: This entry is made to cheer up the upcoming film, Oppenheimer dir. by Christopher Nolan.

Reference:

[1] Eby, N., Hermes, R., Charnley, N., & Smoliga, J. A. (2010). Trinitite—The atomic rock. Geology Today, 26(5), 180-185. https://doi.org/10.1111/j.1365-2451.2010.00767.x
Share:

Amaran saya berkenaan keupayaan AI

"Assuming that AI is just a tool is one of the biggest human mistakes. This will be my warning about the potential risks of underestimating AI's capabilities or potential impact. Further reading, artificial general intelligence (AGI). Could exceed the role of a mere tool." - hh

Menganggap bahawa AI hanyalah sebuah alat hanyalah satu kesilapan terbesar manusia. Ini akan menjadi amaran saya terhadap potensi risiko memandang rendah keupayaan AI atau potensi kesan. Bacaan lanjut, kecerdasan am buatan (AGI). Boleh melebihi peranan alat semata-mata.


Share:

Earth's core younger than surface

Do you know that the earth's core might be younger than its surface? The concept of time dilation is predicted by Albert Einstein's theory of General Relativity. This theory suggests that the passage of time is affected by gravity; in other words, time moves slower in stronger gravitational fields compared to weaker ones.

Since the Earth's core is at a location of stronger gravity than the surface (because it's closer to the mass of the Earth), time would theoretically pass slower there. Therefore, over the history of the Earth, fewer "seconds" would have passed at the core than at the surface. Thus, from a certain point of view, the core could be "younger" than the surface.

This effect is minimal on the scale of Earth's gravity and essentially unnoticeable in our daily lives. However, it becomes much more significant near much more massive objects, like black holes. This phenomenon was confirmed by the famous Hafele-Keating experiment, which showed that clocks flown around the world on jet planes (and hence experiencing less gravity than clocks on the surface) ran slightly faster than their counterparts on Earth.
Share:

Paling kejam

Kufikir antara kejamnya seorang manusia bukan pada kekosongan hatinya pada orang lain. 

Namun kejamnya ia mengisi hati orang lain, lalu ditinggal biar hatinya itu menjadi lalang liar.

- hh
Share:

Tawa paling tawar

Kau mengabaikan sesuatu yang aku juga tidak perlu. Sehendaknya, kita perlu berhenti di pertengahan jalan. Tinggalkanlah segala angkatan tangis, tawa, warna dan rasa yang telah kita bawa. Tidak lagilah berguna.

- hh
Share:

Jumaat, Mei 12, 2023

Memaknai erti kesusahan

Satu perkara yang saya rasa kita selalu terlepas pandang adalah kita selalu fikir bahawa kita seorang sahajalah ada masalah yang spesifik dalam hidup. Tidak ada orang lain yang mempunyai masalah yang sama dengan kita. Sedemikian itulah kita merasakan diri kita keseorangan. Namun, kita lupa untuk memandang satu sudut.

Kita lupa yang kita berada dalam selang hidup dan mati. Maka, akan sentiasa ada orang yang lebih bernasib baik dari kita dan ada orang bernasib buruk dari kita. Diantara kedua selang itu, hidup adalah nasib yang sebaiknya kita perlu syukur dan seburuknya kematian lebih menuntut dari apa yang kita lalui dalam kehidupan.

Maka raikanlah penderitaan sepanjang anda hidup kerana itulah sebenarnya mencorak hidup supaya lebih menarik.

- hh

Share:

Illuminating the Photoelectric Effect: Unraveling Light and Electron Interaction

The photoelectric effect is a phenomenon in physics where electrons are emitted from a material when it is exposed to light or other electromagnetic radiation. It was first discovered and explained by Albert Einstein in 1905 and played a crucial role in the development of quantum mechanics.

The key observations of the photoelectric effect are as follows,

Threshold Frequency
There is a minimum frequency of light below which no electrons are emitted, regardless of the intensity of the light. This frequency is called the threshold frequency.

Electron Emission
When the frequency of incident light exceeds the threshold frequency, electrons are ejected from the material. The number of emitted electrons increases with the intensity (brightness) of the light.

Energy Dependence
The kinetic energy of the emitted electrons depends on the frequency of the incident light. Higher frequency light (shorter wavelength) results in electrons with higher kinetic energy.

To explain the photoelectric effect, Einstein proposed that light consists of discrete packets of energy called photons. Each photon carries a specific amount of energy directly proportional to its frequency. When light interacts with a material, photons can transfer their energy to electrons in the material.

For an electron to be emitted, the energy of a single photon must be sufficient to overcome the binding energy holding the electron in the material, known as the work function. If the photon's energy exceeds the work function, the excess energy becomes the kinetic energy of the emitted electron.

The photoelectric effect supports the particle-like nature of light, as photons behave as discrete particles interacting with electrons. It also implies that electrons possess wave-particle duality, as their behavior depends on the wave properties (frequency) of the incident light.

The photoelectric effect has important practical applications, such as in solar cells, photodiodes, and image sensors. It also contributed to the development of quantum theory, revolutionizing our understanding of the nature of light and matter.
Share:

Non-Abelian anyons encoding information away from each other

Anyons
As we discussed before, anyons are special types of particles. They exist only in two dimensions and have unique properties. When anyons are swapped or "braided" around each other, it changes their quantum state.

Non-Abelian Anyons
There are two types of anyons, Abelian and non-Abelian. Without getting into the details, the important thing to know is that non-Abelian anyons have an extra special property: when you swap them around, the order in which you do it matters. This is not the case with Abelian anyons or with most particles, we're familiar with.

Encoding Information
In the context of quantum computing, "encoding information" means to represent information in the form of quantum states. For a regular qubit, this would be the 0 and 1 states and their superpositions. For anyons, this information is encoded in their braiding patterns.

The fact that in a topological quantum computer, the quantum information is not stored in individual anyons, but rather in the overall pattern of their braiding. This means that the information is in some sense "distributed" across the system, rather than being located at a specific point. This distribution of information is part of what makes topological quantum computers resistant to errors.
Share:

Using Anyons as Qubits: A New Approach to Quantum Computing?

How anyons works?
In the world of quantum computing, we typically talk about something being both 0 and 1 at the same time. This is a unique feature of quantum bits or "qubits". When a qubit is both 0 and 1, it's in a "superposition" of states.

When it comes to anyons, however, it's a bit different. Anyons themselves aren't exactly like qubits. They don't hold a value of 0 or 1, or a superposition of both. Instead, the important thing about anyons is their position relative to each other.

Imagine anyons like dancers in a choreographed dance. The specific dance steps (the way anyons move around each other) are what really matters, not the individual dancer. This dance routine, or "braiding" as it's called, is what encodes the information, similar to how a qubit being 0 or 1 (or both) encodes information.

So, while it doesn't make sense to say an anyon is in a state of both 0 and 1 like a qubit, the way anyons dance around each other (or braid) can represent complex information just like a group of qubits can.

Use anyons to create qubits
Alexei Kitaev suggested we could use anyons to build a more stable and reliable type of qubit for quantum computers.

In traditional quantum computing, a qubit can be in a state of 0, 1, or a superposition of both, and it's this state that stores and processes information. However, these qubits are very sensitive and their states can easily be disturbed, causing them to lose their information.

With anyons, instead of the information being stored in the state of an individual particle, it's stored in the pattern of how anyons are braided or "danced" around each other. This makes the information much more resistant to disturbances, because a small change or error won't change the overall pattern of the dance.

So Kitaev's idea was that by using anyons, we could build quantum computers that can maintain their qubits' information for longer periods of time, making them more practical for performing complex calculations. This would be a big step forward in the development of quantum computers.
Share:

Quantum Computing: Harnessing the Power of Anyons and Braiding

In 1997, Alexei Kitaev, a theorist at the California Institute of Technology, proposed a new way to build quantum computers that could overcome some of the biggest challenges in the field. This would involve using special particles (anyons) and taking advantage of their unique properties (braiding) to create more stable and reliable qubits.

Let break down these concepts in simpler terms.

Quantum Computers
Traditional computers use bits (0s and 1s) to process information. Quantum computers, however, use quantum bits or "qubits." Unlike normal bits, qubits can be in a state of 0, 1, or both at the same time (this is called superposition). This allows quantum computers to process a lot more information and perform complex calculations much faster than traditional computers.


Qubits are fragile
The problem with qubits is they're very delicate. Any disturbance can cause a qubit to lose its state of superposition, a process known as "collapse." When this happens, the qubit forgets the information it was holding, which makes it challenging to perform complex calculations that require some time.


Non-abelian anyons
These are a type of particle that exists in two dimensions. Unlike other particles, when you swap anyons' positions, it changes their quantum state in a special way. This property is unique to anyons and is the basis for the concept of "braiding."


Braiding as a solution
Alexei Kitaev suggested that we could use anyons to create qubits. Because swapping anyons changes their state, you can use this "braiding" process to manipulate the information in your quantum computer. For example, you could change a qubit from a 0 to a 1 by swapping two anyons.


Advantages of anyon-based qubits
The special property of anyons can help to protect against the fragility of qubits. Since the information in anyon-based qubits is stored in the braiding pattern, it's not easily disturbed by the environment. This could allow the quantum computer to hold onto its information for longer, making it possible to perform those complex calculations that are difficult with current technology.
Share:

Rabu, Mei 03, 2023

Arkib Fizik: Perkembangan Fizik Moden dan Falsafahnya

(Segala penulisan dalam entri ini kredit kepada penulis asal)

PERKEMBANGAN FIZIK MODEN DAN FALSAFAHNYA

OLEH: AHMAD KAMAL YAHAYA



Fizik berperanan membentuk konsep-konsep dan hukum-hukum untuk membantu manusia memahami alam maya ini dengan lebih jelas lagi. Hukum-hukum fizik adalah hasil ciptaan fikiran manusia dan justeru itu ia tertakluk kepada batas-batas kefahaman manusia. Ia juga tidak terlepas daripada mengalami perubahan-perubahan dan alam maya tidak mesti mematuhinya.

Sesuatu hukum fizik selalunya merupakan satu kejadian dalam bahasa matematik mengenai hubungan dan diperhatikan berulang bagi sekumpulan kuantiti fizikal dan ia menggambarkan keseragaman dunia fizikal. Hukum atau teori fizik seharusnya dapat secara tepat menerangkan hasil eksperimen dalam domain operasinya yang sudah teruji. Dengan melakukan ujian bagi suatu hukum yang melewati batas-hatas domain yang telah teruji, mungkin menghasilkan keputusan-keputusan yang tidak konsisten dengan eksperimen-eksperimen kemudian hari.

Sudah menjadi adat dalam 'dunia' fizik bahawa teori-teori dan hukum-hukum yang lebih awal menunggu masa sahaja untuk digantikan atau dilengkapi dengan teori-teori baru yang lebih umum dan syumul serta dapat menerangkan sesuatu fenomena dengan lebih jelas dan dalam domain yang lebih luas.

Antara prinsip yang lebih penting dalam fizik ialah prinsip kesepadanan yang menyatakan bahawa apabila semua parameter bagi teori-teori baru dan lama itu sepadan, ramalan bagi kedua-duanya juga seharusnya sepadan. Ini menandakan bahawa suatu teori baru yang lebih umum akan menjurus kepada teori lama yang terhad apabila digunakan pada satu domain operasi yang menghampiri domain operasi teori lama. Mana-mana teori baru yang gagal mewujudkan hubungan ini adalah dianggap bercanggah secara asas dan tidak dapat diterima dalam fizik.

Ilmu fizik kini terbahagi secara umumnya kepada empat bahagian, iaitu fizik klasik, fizik relativiti, fizik kuantum dan fizik kuantum relativiti. Fizik klasik merangkumi mekanik Newton dan elektromagnetik dan khas untuk objek-objek bersaiz biasa yang bergerak pada halaju rendah. Domain fizik relativiti pula meliputi objek-objek yang bergerak dalam lingkungan halaju cahaya. Teori fizik kuantum ialah untuk objek berdimensi 10^-10 meter. Fizik kuantum relativiti pula mempunyai domain yang merangkumi zarah-zarah subatom yang bergerak hampir dengan halaju cahaya.

Jadi bagi objek-objek berdimensi biasa dan halaju rendah, semua hukum fizik klasik boleh digunakan. Tetapi sekiranya halaju objek itu meningkat sehingga menghampiri halaju cahaya, teori fizik klasik 'runtuh' (breakdown) dan teori fizik relativiti perlu digunakan.

Teori fizik klasik juga 'runtuh' bagi objek-objek yang berdimensi terlalu kecil dan dalam domain fizik kuantum menggantikan ketiga-tiga teori fizik yang disebutkan di atas. Walaupun begitu, teori ini tidak mampu bertahan untuk domain dimensi subatom yang berkelajuan tinggi dan ia digantikan oleh teori fizik kuantum relativiti. Sempadan pemisah antara keempat-empat bahagian besar dalam fizik ini tidak jelas malah kerapkali bertindih. Untuk dimensi 10-15 meter ke bawah, berbagai-bagai fenomena yang pelik berlaku dan ianya masih pada tahap perbincangan dan belum difahami sepenuhnya oleh ahli sains.

Fizik klasik lahir pada abad ke-19 dan hukum gerakan Newton merupakan hukum yang amat berpengaruh dalam fizik klasik. Ia adalah hasil daripada persamaan kebezaan peringkat kedua. Ia seolah-olah mengatakan bahawa jika kita mengetahui parameter awal sesuatu jasad dengan tepat, kita dapat meramalkan keadaan jasad tersebut bila-bila masa sahaja secara tepat dan pasti. Intipati daripada andaian ini, fizik klasik mengandungi teori-teori yang berbicara dengan penuh kepastian. Bahasa kebarangkalian tidak digunakan. Segala-galanya berlaku dengan penuh kepastian dan boleh ditentukan sama ada di bumi dan mahupun di pergerakan planet-planet di langit.

Justeru itu ramai ahli fizik yang terpengaruh dengan slogan 'dunia kebolehtentuan' berpendapat bahawa alam maya ini hanyalah satu mesin raksasa yang bergerak mengikut hukum mekanik dan mengenepikan kewujudan Tuhan semesta alam. Mereka menyangka bahawa kesemua bidang, walaupun yang belum diterokai oleh fizik ketika itu, dapat diterangkan dengan formula-formula mekanik yang pasti seperti hukum Newton. Anggapan ini tidak dapat diterima apabila timbulnya fizik kuantum yang menunjukkan bahawa alam ini sebenarnya lebih indah dan lebih seni daripada hanya satu dunia mekanikal fizik klasik.

Teori kerelatifan khas diutarakan oleh Einstein pada tahun 1905 dan merupakan suatu pencapaian yang tiada tolok bandingnya dalam sejarah tamadun manusia. Teori ini lahir daripada dua postulat iaitu prinsip kerelatifan dan ketepatan halaju cahaya. Perlu diingatkan bahawa teori ini bukan lagi suatu yang hipotetikal malah dibuktikan melalui pelbagai kajian dan penyelidikan. Berlawanan dengan fizik klasik, fizik kerelatifan menyatakan bahawa ruang dan masa bukanlah sesuatu yang mutlak malah ianya relatif. Begitu juga kuantiti momentum dan tenaga. Dalam fizik ldasik, panjang sesuatu objek adalah sama bagi semua pemerhati walau apa pun halaju pemerhati relatif kepada objek itu. Tetapi kerelatifan menyatakan bahawa jika halaju itu tinggi, panjang objek akan memendek mengikut satu persamaan yang bergantung kepada halaju objek tersebut. Masa juga menjadi perlahan. Fenomena ini telah dibuktikan melalui kajian muon-muon yang bergerak pada halaju tinggi.

Penulisan Asal:
Share:

Isnin, Mei 01, 2023

Karl Marx, the worker and the object.

Karl Marx's statement, "The worker puts his life into the object; but now his life no longer belongs to him but to the object," expresses his critique of the capitalist system and the concept of alienation. In a capitalist society, Marx believed that workers are estranged from the products of their labor, the labor process, themselves, and their fellow human beings.

This quote specifically refers to the idea of commodity fetishism and the alienation of the worker from the product of their labor. In a capitalist society, the worker produces goods or services for a wage, but the value they create is owned and controlled by the capitalist or employer. The worker's labor becomes a commodity bought and sold in the market, and the product of their labor is owned by someone else. As a result, workers are disconnected from the output of their work.
  1. Marx argued that this alienation had several consequences: Workers lose control over their work, as the capitalist determines the production process and the ultimate use of the product.
  2. The labor process becomes a means to an end (earning a wage) rather than a fulfilling and creative activity.
  3. Workers become alienated from their human potential, as they are reduced to mere cogs in a machine, rather than expressing their full capacities as individuals.
  4. Workers are alienated from each other, as they compete for jobs and wages, rather than cooperating and working together for the common good.
According to Marx, this alienation is a fundamental aspect of capitalism and can only be overcome through a transformation of the economic system, leading to the establishment of socialism and ultimately communism, where workers would own and control the means of production, and labor would be a source of personal fulfillment and social connection.
Share: